Informatics Point

Информатика и проектирование

Дискретные и непрерывные сигналы

Большинство реальных сигналов (например, звуковых) являются непрерывными функциями (если пренебречь квантовыми эффектами). Для обработки на компьютере требуется перевести сигналы в цифровую форму. Один из способов сделать это - равномерно по времени измерить значения сигнала на определенном промежутке времени и ввести полученные значения амплитуд в компьютер. Если делать измерения достаточно часто, то по полученному дискретному сигналу можно будет достаточно точно восстановить вид исходного непрерывного сигнала.

Процесс замера величины сигнала через равные промежутки времени называется равномерной (по времени) дискретизацией. Многие устройства для ввода данных в компьютер осуществляют дискретизацию. Например, звуковая карта дискретизирует сигнал с микрофона, сканер дискретизирует сигнал, поступающий с фотоэлемента. В результате дискретизации непрерывный (аналоговый) сигнал переводится в последовательность чисел. Устройство, выполняющее этот процесс, называется аналогово-цифровым преобразователем (АЦП, analogue-to-digital converter, ADC). Частота, с которой АЦП производит замеры аналогового сигнала и выдает его цифровые значения, называется частотой дискретизации.

Встает вопрос: при каких условиях на исходный сигнал и на частоту дискретизации можно с необходимой степенью точности восстановить исходный сигнал по его цифровым значениям? Ответ на этот вопрос дает важная теорема Котельникова. Однако чтобы ее понять, необходимо познакомиться с понятием спектра непрерывного сигнала.

Как известно из анализа, любая непрерывная функция может быть разложена в интеграл Фурье. Смысл этого разложения состоит в том, что функция представляется в виде суммы "ряда" синусоид с различными амплитудами. Коэффициенты (амплитуды) при синусоидах называются спектром функции. У относительно гладких функций спектр быстро убывает (с ростом частоты коэффициенты быстро стремятся к нулю). Для относительно "ломаных" функций спектр убывает медленно, т.к. для представления разрывов и "изломов" функции нужны синусоиды с большими частотами.

Говорят, что сигнал имеет ограниченный спектр, если выше определенной частоты все коэффициенты спектра равны нулю. В этом случае говорят, что спектр сигнала лежит ниже частоты F (ограничен частотой F), где F - частота, выше которой спектр равен нулю.

Теорема Котельникова (Найквиста, Шеннона): если сигнал таков, что его спектр ограничен частотой F, то после дискретизации сигнала с частотой не менее 2F можно восстановить исходный непрерывный сигнал по полученному цифровому сигналу абсолютно точно. Для этого нужно проинтерполировать цифровой сигнал "между отсчетами" специального вида функциями (sinc-функциями).

На практике эта теорема имеет огромное значение. Например, известно, что большинство звуковых сигналов можно с некоторой степенью точности считать сигналами с ограниченным спектром. Их спектр, в основном, лежит ниже 20 кГц. Это значит, что при дискретизации с частотой не менее 40 кГц мы можем потом более-менее точно восстановить исходный аналоговый звуковой сигнал по его цифровым отсчетам. Абсолютной точности достичь не удастся, так как в природе не бывает сигналов с идеально ограниченным спектром.

Устройство, которое интерполирует дискретный сигнал до непрерывного, называется цифро-аналоговым преобразователем (ЦАП, digital-to-analogue converter, DAC). Эти устройства применяются, например, в проигрывателях компакт-дисков для восстановления звука по цифровому звуковому сигналу, записанному на компакт-диск. Частота дискретизации звукового сигнала при записи на компакт-диск составляет 44100 Гц. Таким образом, говорят, что ЦАП на CD-плеере работает на частоте 44100 Гц.

Перейти на страницу: 1 2

Лучшие статьи по информатике

Модуль аналого-цифрового вводавывода FESTO EasyPort
гидравлический распределитель привод В настоящее время множество промышленных предприятий используют гидравлические исполнительные устройства (гидромоторы, ци ...

Проектирование источника вторичного электропитания
Научно технический прогресс в значительной мере связан с развитием радиотехники и электроники. В таких далёких от радиотехники областях, как медицина, транс ...

Часы–будильник с матричным светодиодным индикатором
Данная тема курсового проекта «Часы - будильник с матричным светодиодным индикатором. Схема индикации» была предложена цикловой комиссией специальности 2301 ...

Меню сайта