Informatics Point

Информатика и проектирование

Перспективы развития

Светоизлучающий органический полевой транзистор [11].

Изобретение относится к области оптики, в частности к электролюминесцирующим наноструктурам, и может быть использовано при создании устройств для отображения алфавитно-цифровой и графической информации. Сущность изобретения состоит в том, что активный слой выполнен в виде органической матрицы с внедренными в нее двухкомпонентными (ядро-оболочка) полупроводниковыми наночастицами. Диаметр полупроводникового ядра наночастиц может изменяться в пределах 2.0-6.0 нм а толщина полупроводниковой оболочки может изменяться в пределах 1.0-3.0 нм для перестройки длины волны излучения в пределах 400-650 нм видимого спектра. Изобретение может быть использовано для создания светоизлучающих органических полевых транзисторов с высоким квантовым выходом люминесценции и регулируемым спектром излучения в видимом диапазоне длин волн, что важно для создания алфавитно-цифровых дисплеев нового поколения.

Создание графеновых транзисторов [12]. Исследователи из HRL Laboratories объявили о создании графеновых полевых транзисторов, в которых подвижность зарядов в 6 - 8 раз превышает возможности современных кремниевых технологий. Для кремния экспериментально измеренная подвижность зарядов в кремнии составляет около 1400 квадратных сантиметров на вольт в секунду, для в графена подвижность может достигать 200 тысяч см2/В×с при комнатной температуре (правда, на практике пока был достигнут уровень лишь в 15 тысяч см2/В×с, что, более чем в 10 раз превосходит кремний). Исследователи из HRL Laboratories объявили о том, что им удалось создать устройства из единичного слоя графена на подложке из карбида кремния диаметром 2 дюйма. В транзисторах данного типа подвижность зарядов составляет порядка 6000 см2/В×с, что в 6 - 8 раз выше, чем у наиболее совершенной на сегодняшний день кремниевой технологии n-MOSFET.

-нм технология FinFET от Intel.[13] Впервые были запущены в серийное производство транзисторы с трехмерной структурой. О начале производства объемной транзисторной структуры Tri-Gate компания Intel известила общественность еще в 2002 г. Однако кристаллы с такими транзисторами корпорация начала продавать только в апреле: новые процессоры Intel носят кодовое имя Ivy Bridge. Трехзатворные транзисторы имеют структуру, представленную на рис. 12.

Рис. 12. Схема трехзатворного транзистора с ребрами: : gate - затвор, oxide - оксид кремния, silicon substrate - кремниевая подложка.

В 3D-транзисторе Tri-Gate используются три затвора, расположенных вокруг кремниевого канала в объемной структуре, что обеспечивает уникальное сочетание производительности и очень малого потребления - преимуществ, востребованных как в смартфонах и планшетах, так и для мощных процессоров для ПК и серверов. Высокая эффективность новых транзисторов при низком напряжении питания позволяет создавать новые микроархитектуры на базе 22-нм процессоров Intel Atom. Здесь в полной мере используются возможности технологии 3D Tri-Gate, обеспечивающей очень малое потребление.

Заключение

Развитие полупроводниковых приборов происходит весьма быстрыми темпами. Разрабатываются приборы для работы в области высоких частот, мощностей и температур при минимизации их размеров. Особое внимание уделяется повышению надежности, стабильности и долговечности работы транзисторов в различных режимах и условиях эксплуатации. Наиболее важным направлением развития электроники является миниатюризация приборов. Это связано с тем, бурным развитием микроэлектроники и вычислительной техники с цифровой обработкой различной информации. В данной курсовой работе представлена история создания полевых транзисторов, рассмотрены физические процессы в полевых транзисторах, приведена их классификация, приведены основные их характеристики и режимы работы в различных схемах включения, рассмотрено применение полевых транзисторов, перспективы их развития. Данная курсовая работа может быть использована в учебном процессе при изучении основ и применения полевых транзисторов.

Лучшие статьи по информатике

Расчет основных характеристик усилительного каскада биполярного транзистора
транзистор усилитель каскад Целью данной курсовой работы по предмету “Схемотехника телекоммуникационных устройств” является применение знаний полученных ...

Оптрон гальванической развязки
Основное преимущество обратноходовой топологии - дешевизна и малое количество компонентов. Поэтому практически все сетевые источники питания до мощностей 30 ...

Построение и анализ математической модели объекта управления
Построим математическую модель объекта управления в пространстве состояния Рисунок 2 Структурная схема ОУ В схеме четыре элемента, запасающих э ...

Меню сайта